8 research outputs found

    Contribution to the fluid dynamic study of reconstructed aortic arch

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation

    No full text
    Shape memory alloys (SMAs) are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE), shape memory effect (SME) and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb. Two different SMA-based applications in the field of neuroscience are then presented, a guide and a limb mobiliser specially designed to be compatible with diagnostic instrumentations that impose rigid constraints in terms of electromagnetic compatibility and noise distortion. Finally, the paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be advantageous

    A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation

    No full text
    Multidomain instrumental evaluation of post-stroke chronic patients, coupled with standard clinical assessments, has rarely been exploited in the literature. Such an approach may be valuable to provide comprehensive insight regarding patients’ status, as well as orienting the rehabilitation therapies. Therefore, we propose a multidomain analysis including clinically compliant methods as electroencephalography (EEG), electromyography (EMG), kinematics, and clinical scales. The framework of upper-limb robot-assisted rehabilitation is selected as a challenging and promising scenario to test the multi-parameter evaluation, with the aim to assess whether and in which domains modifications may take place. Instrumental recordings and clinical scales were administered before and after a month of intensive robotic therapy of the impaired upper limb, on five post-stroke chronic hemiparetic patients. After therapy, all patients showed clinical improvement and presented pre/post modifications in one or several of the other domains as well. All patients performed the motor task in a smoother way; two of them appeared to change their muscle synergies activation strategies, and most subjects showed variations in their brain activity, both in the ipsi- and contralateral hemispheres. Changes highlighted by the new multiparametric instrumental approach suggest a recovery trend in agreement with clinical scales. In addition, by jointly demonstrating lateralization of brain activations, changes in muscle recruitment and the execution of smoother trajectories, the new approach may help distinguish between true functional recovery and the adoption of suboptimal compensatory strategies. In the light of these premises, the multi-domain approach may allow a finer patient characterization, providing a deeper insight into the mechanisms underlying the relearning procedure and the level (neuro/muscular) at which it occurred, at a relatively low expenditure. The role of this quantitative description in defining a personalized treatment strategy is of great interest and should be addressed in future studies
    corecore